Managing Machine Learning with MLOps and
Kubeflow
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https://github.com/actions/virtual-environments#github-actions-virtual-environments
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ML current scenario
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E2E ML lifecycle

= Develop & train model with reusable ML pipelines

= Package model using containers to capture runtime dependencies for inference

= Validate model behavior functionally, in terms of responsiveness, in terms of compliance
= Deploy model to cloud & edge, for use in real-time / streaming / batch processing

= Monitor model behavior & business value, know when to replace / deprecate a stale model

Train Model Package Model  Validate Model  Deploy Model  Monitor Model

Retrain Model
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MLOps = ML + DEV + OPS

Experiment

Data Acquisition
Business Understanding
Initial Modeling

Develop

Modeling + Testing
Continuous Integration
Continuous Deployment

Github.com/karthikmuniappan

Operate

Continuous Delivery
Data Feedback Loop
System + Model
Monitoring



MLOps Benefits

Automation / Observability

Code drives generation and
deployments

Pipelines are reproducible and
verifiable

All artifacts can be tagged and
audited

Validation

SWE best practices for quality
control

Offline comparisons of model
quality

Minimize bias and enable
explainability

== VELOCITY and SECURITY for ML
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:::.”'” Reproducibility / Auditability

= Controlled rollout capabilities

= Live comparison of predicted vs.
expected performance

= Results fed back to watch for drift
and improve model :



MLOps with Kubeflow + CI/CD
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Kubeflow

A\

Kubeflow — Machine Learning toolkit for Kubernetes

ML Workloads
(Modelling, training, roll-out, serving,

%o Kubeflow

kubernetes

Infrastructure
(Cloud/On-Prem)

= Open source machine learning toolkit for Kubernetes
= Simple, portable and scalable workflow
= Adapted Kubernetes for Machine Learning

= QOriginated at Google
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Kubeflow components
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ML in real world multi-cloud

Process ; Train , Stage : Serve
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